/** * Copyright (c) 2014-2018 Enzien Audio Ltd. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #ifndef _HEAVY_SIGNAL_TABREAD_H_ #define _HEAVY_SIGNAL_TABREAD_H_ #include "HvHeavyInternal.h" #ifdef __cplusplus extern "C" { #endif typedef struct SignalTabread { HvTable *table; // the table to read hv_uint32_t head; bool forceAlignedLoads; // false by default, true if using __hv_tabread_f } SignalTabread; // random access to a table hv_size_t sTabread_init(SignalTabread *o, HvTable *table, bool forceAlignedLoads); #if HV_APPLE #pragma mark - Tabread - Random Access #endif static inline void __hv_tabread_if(SignalTabread *o, hv_bIni_t bIn, hv_bOutf_t bOut) { const float *const b = hTable_getBuffer(o->table); #if HV_SIMD_AVX const hv_int32_t *const i = (hv_int32_t *) &bIn; hv_assert(i[0] >= 0 && i[0] < hTable_getAllocated(o->table)); hv_assert(i[1] >= 0 && i[1] < hTable_getAllocated(o->table)); hv_assert(i[2] >= 0 && i[2] < hTable_getAllocated(o->table)); hv_assert(i[3] >= 0 && i[3] < hTable_getAllocated(o->table)); hv_assert(i[4] >= 0 && i[4] < hTable_getAllocated(o->table)); hv_assert(i[5] >= 0 && i[5] < hTable_getAllocated(o->table)); hv_assert(i[6] >= 0 && i[6] < hTable_getAllocated(o->table)); hv_assert(i[7] >= 0 && i[7] < hTable_getAllocated(o->table)); *bOut = _mm256_set_ps(b[i[7]], b[i[6]], b[i[5]], b[i[4]], b[i[3]], b[i[2]], b[i[1]], b[i[0]]); #elif HV_SIMD_SSE const hv_int32_t *const i = (hv_int32_t *) &bIn; hv_assert(i[0] >= 0 && ((hv_uint32_t) i[0]) < hTable_getAllocated(o->table)); hv_assert(i[1] >= 0 && ((hv_uint32_t) i[1]) < hTable_getAllocated(o->table)); hv_assert(i[2] >= 0 && ((hv_uint32_t) i[2]) < hTable_getAllocated(o->table)); hv_assert(i[3] >= 0 && ((hv_uint32_t) i[3]) < hTable_getAllocated(o->table)); *bOut = _mm_set_ps(b[i[3]], b[i[2]], b[i[1]], b[i[0]]); #elif HV_SIMD_NEON hv_assert((bIn[0] >= 0) && (bIn[0] < hTable_getAllocated(o->table))); hv_assert((bIn[1] >= 0) && (bIn[1] < hTable_getAllocated(o->table))); hv_assert((bIn[2] >= 0) && (bIn[2] < hTable_getAllocated(o->table))); hv_assert((bIn[3] >= 0) && (bIn[3] < hTable_getAllocated(o->table))); *bOut = (float32x4_t) {b[bIn[0]], b[bIn[1]], b[bIn[2]], b[bIn[3]]}; #else // HV_SIMD_NONE hv_assert(bIn >= 0 && ((hv_uint32_t) bIn < hTable_getAllocated(o->table))); *bOut = b[bIn]; #endif } #if HV_APPLE #pragma mark - Tabread - Linear Access #endif // this tabread never stops reading. It is mainly intended for linear reads that loop around a table. static inline void __hv_tabread_f(SignalTabread *o, hv_bOutf_t bOut) { hv_assert((o->head + HV_N_SIMD) <= hTable_getAllocated(o->table)); // assert that we always read within the table bounds hv_uint32_t head = o->head; #if HV_SIMD_AVX *bOut = _mm256_load_ps(hTable_getBuffer(o->table) + head); #elif HV_SIMD_SSE *bOut = _mm_load_ps(hTable_getBuffer(o->table) + head); #elif HV_SIMD_NEON *bOut = vld1q_f32(hTable_getBuffer(o->table) + head); #else // HV_SIMD_NONE *bOut = *(hTable_getBuffer(o->table) + head); #endif o->head = head + HV_N_SIMD; } // unaligned linear tabread, as above static inline void __hv_tabreadu_f(SignalTabread *o, hv_bOutf_t bOut) { hv_assert((o->head + HV_N_SIMD) <= hTable_getAllocated(o->table)); // assert that we always read within the table bounds hv_uint32_t head = o->head; #if HV_SIMD_AVX *bOut = _mm256_loadu_ps(hTable_getBuffer(o->table) + head); #elif HV_SIMD_SSE *bOut = _mm_loadu_ps(hTable_getBuffer(o->table) + head); #elif HV_SIMD_NEON *bOut = vld1q_f32(hTable_getBuffer(o->table) + head); #else // HV_SIMD_NONE *bOut = *(hTable_getBuffer(o->table) + head); #endif o->head = head + HV_N_SIMD; } // this tabread can be instructed to stop. It is mainly intended for linear reads that only process a portion of a buffer. static inline void __hv_tabread_stoppable_f(SignalTabread *o, hv_bOutf_t bOut) { #if HV_SIMD_AVX if (o->head == ~0x0) { *bOut = _mm256_setzero_ps(); } else { *bOut = _mm256_load_ps(hTable_getBuffer(o->table) + o->head); o->head += HV_N_SIMD; } #elif HV_SIMD_SSE if (o->head == ~0x0) { *bOut = _mm_setzero_ps(); } else { *bOut = _mm_load_ps(hTable_getBuffer(o->table) + o->head); o->head += HV_N_SIMD; } #elif HV_SIMD_NEON if (o->head == ~0x0) { *bOut = vdupq_n_f32(0.0f); } else { *bOut = vld1q_f32(hTable_getBuffer(o->table) + o->head); o->head += HV_N_SIMD; } #else // HV_SIMD_NONE if (o->head == ~0x0) { *bOut = 0.0f; } else { *bOut = *(hTable_getBuffer(o->table) + o->head); o->head += HV_N_SIMD; } #endif } void sTabread_onMessage(HeavyContextInterface *_c, SignalTabread *o, int letIn, const HvMessage *m, void (*sendMessage)(HeavyContextInterface *, int, const HvMessage *)); #if HV_APPLE #pragma mark - Tabhead #endif typedef struct SignalTabhead { HvTable *table; } SignalTabhead; hv_size_t sTabhead_init(SignalTabhead *o, HvTable *table); static inline void __hv_tabhead_f(SignalTabhead *o, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_set1_ps((float) hTable_getHead(o->table)); #elif HV_SIMD_SSE *bOut = _mm_set1_ps((float) hTable_getHead(o->table)); #elif HV_SIMD_NEON *bOut = vdupq_n_f32((float32_t) hTable_getHead(o->table)); #else // HV_SIMD_NONE *bOut = (float) hTable_getHead(o->table); #endif } void sTabhead_onMessage(HeavyContextInterface *_c, SignalTabhead *o, const HvMessage *m); #ifdef __cplusplus } // extern "C" #endif #endif // _HEAVY_SIGNAL_TABREAD_H_