140 lines
4.9 KiB
C
140 lines
4.9 KiB
C
/**
|
|
* Copyright (c) 2014-2018 Enzien Audio Ltd.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
|
|
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
|
|
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
|
|
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
|
|
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
|
|
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
|
|
* PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "HvSignalLine.h"
|
|
|
|
hv_size_t sLine_init(SignalLine *o) {
|
|
#if HV_SIMD_AVX
|
|
o->n = _mm_setzero_si128();
|
|
o->x = _mm256_setzero_ps();
|
|
o->m = _mm256_setzero_ps();
|
|
o->t = _mm256_setzero_ps();
|
|
#elif HV_SIMD_SSE
|
|
o->n = _mm_setzero_si128();
|
|
o->x = _mm_setzero_ps();
|
|
o->m = _mm_setzero_ps();
|
|
o->t = _mm_setzero_ps();
|
|
#elif HV_SIMD_NEON
|
|
o->n = vdupq_n_s32(0);
|
|
o->x = vdupq_n_f32(0.0f);
|
|
o->m = vdupq_n_f32(0.0f);
|
|
o->t = vdupq_n_f32(0.0f);
|
|
#else // HV_SIMD_NONE
|
|
o->n = 0;
|
|
o->x = 0.0f;
|
|
o->m = 0.0f;
|
|
o->t = 0.0f;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void sLine_onMessage(HeavyContextInterface *_c, SignalLine *o, int letIn,
|
|
const HvMessage *m, void *sendMessage) {
|
|
if (msg_isFloat(m,0)) {
|
|
if (msg_isFloat(m,1)) {
|
|
// new ramp
|
|
int n = (int) hv_millisecondsToSamples(_c, msg_getFloat(m,1));
|
|
#if HV_SIMD_AVX
|
|
float x = (o->n[1] > 0) ? (o->x[7] + (o->m[7]/8.0f)) : o->t[7]; // current output value
|
|
float s = (msg_getFloat(m,0) - x) / ((float) n); // slope per sample
|
|
o->n = _mm_set_epi32(n-3, n-2, n-1, n);
|
|
o->x = _mm256_set_ps(x+7.0f*s, x+6.0f*s, x+5.0f*s, x+4.0f*s, x+3.0f*s, x+2.0f*s, x+s, x);
|
|
o->m = _mm256_set1_ps(8.0f*s);
|
|
o->t = _mm256_set1_ps(msg_getFloat(m,0));
|
|
#elif HV_SIMD_SSE
|
|
const hv_int32_t *const on = (hv_int32_t *) &o->n;
|
|
const float *const ox = (float *) &o->x;
|
|
const float *const om = (float *) &o->m;
|
|
const float *const ot = (float *) &o->t;
|
|
|
|
float x = (on[3] > 0) ? (ox[3] + (om[3]/4.0f)) : ot[3];
|
|
float s = (msg_getFloat(m,0) - x) / ((float) n); // slope per sample
|
|
o->n = _mm_set_epi32(n-3, n-2, n-1, n);
|
|
o->x = _mm_set_ps(x+3.0f*s, x+2.0f*s, x+s, x);
|
|
o->m = _mm_set1_ps(4.0f*s);
|
|
o->t = _mm_set1_ps(msg_getFloat(m,0));
|
|
#elif HV_SIMD_NEON
|
|
float x = (o->n[3] > 0) ? (o->x[3] + (o->m[3]/4.0f)) : o->t[3];
|
|
float s = (msg_getFloat(m,0) - x) / ((float) n);
|
|
o->n = (int32x4_t) {n, n-1, n-2, n-3};
|
|
o->x = (float32x4_t) {x, x+s, x+2.0f*s, x+3.0f*s};
|
|
o->m = vdupq_n_f32(4.0f*s);
|
|
o->t = vdupq_n_f32(msg_getFloat(m,0));
|
|
#else // HV_SIMD_NONE
|
|
o->x = (o->n > 0) ? (o->x + o->m) : o->t; // new current value
|
|
o->n = n; // new distance to target
|
|
o->m = (msg_getFloat(m,0) - o->x) / ((float) n); // slope per sample
|
|
o->t = msg_getFloat(m,0);
|
|
#endif
|
|
} else {
|
|
// Jump to value
|
|
#if HV_SIMD_AVX
|
|
o->n = _mm_setzero_si128();
|
|
o->x = _mm256_set1_ps(msg_getFloat(m,0));
|
|
o->m = _mm256_setzero_ps();
|
|
o->t = _mm256_set1_ps(msg_getFloat(m,0));
|
|
#elif HV_SIMD_SSE
|
|
o->n = _mm_setzero_si128();
|
|
o->x = _mm_set1_ps(msg_getFloat(m,0));
|
|
o->m = _mm_setzero_ps();
|
|
o->t = _mm_set1_ps(msg_getFloat(m,0));
|
|
#elif HV_SIMD_NEON
|
|
o->n = vdupq_n_s32(0);
|
|
o->x = vdupq_n_f32(msg_getFloat(m,0));
|
|
o->m = vdupq_n_f32(0.0f);
|
|
o->t = vdupq_n_f32(msg_getFloat(m,0));
|
|
#else // HV_SIMD_NONE
|
|
o->n = 0;
|
|
o->x = msg_getFloat(m,0);
|
|
o->m = 0.0f;
|
|
o->t = msg_getFloat(m,0);
|
|
#endif
|
|
}
|
|
} else if (msg_compareSymbol(m,0,"stop")) {
|
|
// Stop line at current position
|
|
#if HV_SIMD_AVX
|
|
// note o->n[1] is a 64-bit integer; two packed 32-bit ints. We only want to know if the high int is positive,
|
|
// which can be done simply by testing the long int for positiveness.
|
|
float x = (o->n[1] > 0) ? (o->x[7] + (o->m[7]/8.0f)) : o->t[7];
|
|
o->n = _mm_setzero_si128();
|
|
o->x = _mm256_set1_ps(x);
|
|
o->m = _mm256_setzero_ps();
|
|
o->t = _mm256_set1_ps(x);
|
|
#elif HV_SIMD_SSE
|
|
const hv_int32_t *const on = (hv_int32_t *) &o->n;
|
|
const float *const ox = (float *) &o->x;
|
|
const float *const om = (float *) &o->m;
|
|
const float *const ot = (float *) &o->t;
|
|
float x = (on[3] > 0) ? (ox[3] + (om[3]/4.0f)) : ot[3];
|
|
o->n = _mm_setzero_si128();
|
|
o->x = _mm_set1_ps(x);
|
|
o->m = _mm_setzero_ps();
|
|
o->t = _mm_set1_ps(x);
|
|
#elif HV_SIMD_NEON
|
|
float x = (o->n[3] > 0) ? (o->x[3] + (o->m[3]/4.0f)) : o->t[3];
|
|
o->n = vdupq_n_s32(0);
|
|
o->x = vdupq_n_f32(x);
|
|
o->m = vdupq_n_f32(0.0f);
|
|
o->t = vdupq_n_f32(x);
|
|
#else // HV_SIMD_NONE
|
|
o->n = 0;
|
|
o->x += o->m;
|
|
o->m = 0.0f;
|
|
o->t = o->x;
|
|
#endif
|
|
}
|
|
}
|