example_hvcc2dpf/distrho/source/HvSignalTabread.h
2021-03-23 22:07:32 +01:00

184 lines
6.0 KiB
C

/**
* Copyright (c) 2014-2018 Enzien Audio Ltd.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef _HEAVY_SIGNAL_TABREAD_H_
#define _HEAVY_SIGNAL_TABREAD_H_
#include "HvHeavyInternal.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct SignalTabread {
HvTable *table; // the table to read
hv_uint32_t head;
bool forceAlignedLoads; // false by default, true if using __hv_tabread_f
} SignalTabread;
// random access to a table
hv_size_t sTabread_init(SignalTabread *o, HvTable *table, bool forceAlignedLoads);
#if HV_APPLE
#pragma mark - Tabread - Random Access
#endif
static inline void __hv_tabread_if(SignalTabread *o, hv_bIni_t bIn, hv_bOutf_t bOut) {
const float *const b = hTable_getBuffer(o->table);
#if HV_SIMD_AVX
const hv_int32_t *const i = (hv_int32_t *) &bIn;
hv_assert(i[0] >= 0 && i[0] < hTable_getAllocated(o->table));
hv_assert(i[1] >= 0 && i[1] < hTable_getAllocated(o->table));
hv_assert(i[2] >= 0 && i[2] < hTable_getAllocated(o->table));
hv_assert(i[3] >= 0 && i[3] < hTable_getAllocated(o->table));
hv_assert(i[4] >= 0 && i[4] < hTable_getAllocated(o->table));
hv_assert(i[5] >= 0 && i[5] < hTable_getAllocated(o->table));
hv_assert(i[6] >= 0 && i[6] < hTable_getAllocated(o->table));
hv_assert(i[7] >= 0 && i[7] < hTable_getAllocated(o->table));
*bOut = _mm256_set_ps(b[i[7]], b[i[6]], b[i[5]], b[i[4]], b[i[3]], b[i[2]], b[i[1]], b[i[0]]);
#elif HV_SIMD_SSE
const hv_int32_t *const i = (hv_int32_t *) &bIn;
hv_assert(i[0] >= 0 && ((hv_uint32_t) i[0]) < hTable_getAllocated(o->table));
hv_assert(i[1] >= 0 && ((hv_uint32_t) i[1]) < hTable_getAllocated(o->table));
hv_assert(i[2] >= 0 && ((hv_uint32_t) i[2]) < hTable_getAllocated(o->table));
hv_assert(i[3] >= 0 && ((hv_uint32_t) i[3]) < hTable_getAllocated(o->table));
*bOut = _mm_set_ps(b[i[3]], b[i[2]], b[i[1]], b[i[0]]);
#elif HV_SIMD_NEON
hv_assert((bIn[0] >= 0) && (bIn[0] < hTable_getAllocated(o->table)));
hv_assert((bIn[1] >= 0) && (bIn[1] < hTable_getAllocated(o->table)));
hv_assert((bIn[2] >= 0) && (bIn[2] < hTable_getAllocated(o->table)));
hv_assert((bIn[3] >= 0) && (bIn[3] < hTable_getAllocated(o->table)));
*bOut = (float32x4_t) {b[bIn[0]], b[bIn[1]], b[bIn[2]], b[bIn[3]]};
#else // HV_SIMD_NONE
hv_assert(bIn >= 0 && ((hv_uint32_t) bIn < hTable_getAllocated(o->table)));
*bOut = b[bIn];
#endif
}
#if HV_APPLE
#pragma mark - Tabread - Linear Access
#endif
// this tabread never stops reading. It is mainly intended for linear reads that loop around a table.
static inline void __hv_tabread_f(SignalTabread *o, hv_bOutf_t bOut) {
hv_assert((o->head + HV_N_SIMD) <= hTable_getAllocated(o->table)); // assert that we always read within the table bounds
hv_uint32_t head = o->head;
#if HV_SIMD_AVX
*bOut = _mm256_load_ps(hTable_getBuffer(o->table) + head);
#elif HV_SIMD_SSE
*bOut = _mm_load_ps(hTable_getBuffer(o->table) + head);
#elif HV_SIMD_NEON
*bOut = vld1q_f32(hTable_getBuffer(o->table) + head);
#else // HV_SIMD_NONE
*bOut = *(hTable_getBuffer(o->table) + head);
#endif
o->head = head + HV_N_SIMD;
}
// unaligned linear tabread, as above
static inline void __hv_tabreadu_f(SignalTabread *o, hv_bOutf_t bOut) {
hv_assert((o->head + HV_N_SIMD) <= hTable_getAllocated(o->table)); // assert that we always read within the table bounds
hv_uint32_t head = o->head;
#if HV_SIMD_AVX
*bOut = _mm256_loadu_ps(hTable_getBuffer(o->table) + head);
#elif HV_SIMD_SSE
*bOut = _mm_loadu_ps(hTable_getBuffer(o->table) + head);
#elif HV_SIMD_NEON
*bOut = vld1q_f32(hTable_getBuffer(o->table) + head);
#else // HV_SIMD_NONE
*bOut = *(hTable_getBuffer(o->table) + head);
#endif
o->head = head + HV_N_SIMD;
}
// this tabread can be instructed to stop. It is mainly intended for linear reads that only process a portion of a buffer.
static inline void __hv_tabread_stoppable_f(SignalTabread *o, hv_bOutf_t bOut) {
#if HV_SIMD_AVX
if (o->head == ~0x0) {
*bOut = _mm256_setzero_ps();
} else {
*bOut = _mm256_load_ps(hTable_getBuffer(o->table) + o->head);
o->head += HV_N_SIMD;
}
#elif HV_SIMD_SSE
if (o->head == ~0x0) {
*bOut = _mm_setzero_ps();
} else {
*bOut = _mm_load_ps(hTable_getBuffer(o->table) + o->head);
o->head += HV_N_SIMD;
}
#elif HV_SIMD_NEON
if (o->head == ~0x0) {
*bOut = vdupq_n_f32(0.0f);
} else {
*bOut = vld1q_f32(hTable_getBuffer(o->table) + o->head);
o->head += HV_N_SIMD;
}
#else // HV_SIMD_NONE
if (o->head == ~0x0) {
*bOut = 0.0f;
} else {
*bOut = *(hTable_getBuffer(o->table) + o->head);
o->head += HV_N_SIMD;
}
#endif
}
void sTabread_onMessage(HeavyContextInterface *_c, SignalTabread *o, int letIn, const HvMessage *m,
void (*sendMessage)(HeavyContextInterface *, int, const HvMessage *));
#if HV_APPLE
#pragma mark - Tabhead
#endif
typedef struct SignalTabhead {
HvTable *table;
} SignalTabhead;
hv_size_t sTabhead_init(SignalTabhead *o, HvTable *table);
static inline void __hv_tabhead_f(SignalTabhead *o, hv_bOutf_t bOut) {
#if HV_SIMD_AVX
*bOut = _mm256_set1_ps((float) hTable_getHead(o->table));
#elif HV_SIMD_SSE
*bOut = _mm_set1_ps((float) hTable_getHead(o->table));
#elif HV_SIMD_NEON
*bOut = vdupq_n_f32((float32_t) hTable_getHead(o->table));
#else // HV_SIMD_NONE
*bOut = (float) hTable_getHead(o->table);
#endif
}
void sTabhead_onMessage(HeavyContextInterface *_c, SignalTabhead *o, const HvMessage *m);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // _HEAVY_SIGNAL_TABREAD_H_