example_hvcc2dpf/distrho/source/HvSignalTabwrite.h
2021-03-23 22:07:32 +01:00

148 lines
5.4 KiB
C

/**
* Copyright (c) 2014-2018 Enzien Audio Ltd.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef _HEAVY_SIGNAL_TABWRITE_H_
#define _HEAVY_SIGNAL_TABWRITE_H_
#include "HvHeavyInternal.h"
#ifdef __cplusplus
extern "C" {
#endif
#define HV_TABWRITE_STOPPED -1 // ~0x0
typedef struct SignalTabwrite {
HvTable *table;
hv_uint32_t head; // local write head. Where this object has most recently written to the table.
} SignalTabwrite;
hv_size_t sTabwrite_init(SignalTabwrite *o, HvTable *table);
void sTabwrite_onMessage(HeavyContextInterface *_c, SignalTabwrite *o, int letIn, const HvMessage *m,
void (*sendMessage)(HeavyContextInterface *, int, const HvMessage *));
// linear write to table
static inline void __hv_tabwrite_f(SignalTabwrite *o, hv_bInf_t bIn) {
hv_assert((o->head + HV_N_SIMD) <= hTable_getSize(o->table)); // assert that the table bounds are respected
hv_uint32_t head = o->head;
#if HV_SIMD_AVX
_mm256_store_ps(hTable_getBuffer(o->table) + head, bIn);
#elif HV_SIMD_SSE
_mm_store_ps(hTable_getBuffer(o->table) + head, bIn);
#elif HV_SIMD_NEON
vst1q_f32(hTable_getBuffer(o->table) + head, bIn);
#else // HV_SIMD_NONE
*(hTable_getBuffer(o->table) + head) = bIn;
#endif
head += HV_N_SIMD;
o->head = head; // update local write head
hTable_setHead(o->table, head); // update the remote write head (e.g. for use by vd~)
}
// linear unaligned write to table
static inline void __hv_tabwriteu_f(SignalTabwrite *o, hv_bInf_t bIn) {
hv_uint32_t head = o->head;
#if HV_SIMD_AVX
_mm256_storeu_ps(hTable_getBuffer(o->table) + head, bIn);
#elif HV_SIMD_SSE
_mm_storeu_ps(hTable_getBuffer(o->table) + head, bIn);
#elif HV_SIMD_NEON
vst1q_f32(hTable_getBuffer(o->table) + head, bIn);
#else // HV_SIMD_NONE
*(hTable_getBuffer(o->table) + head) = bIn;
#endif
head += HV_N_SIMD;
o->head = head; // update local write head
hTable_setHead(o->table, head); // update remote write head
}
// this tabread can be instructed to stop. It is mainly intended for linear reads that only process a portion of a buffer.
// Stores are unaligned, which can be slow but allows any indicies to be written to.
// TODO(mhroth): this is not stopping!
static inline void __hv_tabwrite_stoppable_f(SignalTabwrite *o, hv_bInf_t bIn) {
if (o->head != HV_TABWRITE_STOPPED) {
#if HV_SIMD_AVX
_mm256_storeu_ps(hTable_getBuffer(o->table) + o->head, bIn);
#elif HV_SIMD_SSE
_mm_storeu_ps(hTable_getBuffer(o->table) + o->head, bIn);
#elif HV_SIMD_NEON
vst1q_f32(hTable_getBuffer(o->table) + o->head, bIn);
#else // HV_SIMD_NONE
*(hTable_getBuffer(o->table) + o->head) = bIn;
#endif
o->head += HV_N_SIMD;
}
}
// random write to table
static inline void __hv_tabwrite_if(SignalTabwrite *o, hv_bIni_t bIn0, hv_bInf_t bIn1) {
float *const b = hTable_getBuffer(o->table);
#if HV_SIMD_AVX
const hv_int32_t *const i = (hv_int32_t *) &bIn0;
const float *const f = (float *) &bIn1;
hv_assert(i[0] >= 0 && i[0] < hTable_getAllocated(o->table));
hv_assert(i[1] >= 0 && i[1] < hTable_getAllocated(o->table));
hv_assert(i[2] >= 0 && i[2] < hTable_getAllocated(o->table));
hv_assert(i[3] >= 0 && i[3] < hTable_getAllocated(o->table));
hv_assert(i[4] >= 0 && i[4] < hTable_getAllocated(o->table));
hv_assert(i[5] >= 0 && i[5] < hTable_getAllocated(o->table));
hv_assert(i[6] >= 0 && i[6] < hTable_getAllocated(o->table));
hv_assert(i[7] >= 0 && i[7] < hTable_getAllocated(o->table));
b[i[0]] = f[0];
b[i[1]] = f[1];
b[i[2]] = f[2];
b[i[3]] = f[3];
b[i[4]] = f[4];
b[i[5]] = f[5];
b[i[6]] = f[6];
b[i[7]] = f[7];
#elif HV_SIMD_SSE
const hv_int32_t *const i = (hv_int32_t *) &bIn0;
const float *const f = (float *) &bIn1;
hv_assert(i[0] >= 0 && ((hv_uint32_t) i[0]) < hTable_getAllocated(o->table));
hv_assert(i[1] >= 0 && ((hv_uint32_t) i[1]) < hTable_getAllocated(o->table));
hv_assert(i[2] >= 0 && ((hv_uint32_t) i[2]) < hTable_getAllocated(o->table));
hv_assert(i[3] >= 0 && ((hv_uint32_t) i[3]) < hTable_getAllocated(o->table));
b[i[0]] = f[0];
b[i[1]] = f[1];
b[i[2]] = f[2];
b[i[3]] = f[3];
#elif HV_SIMD_NEON
hv_assert((vgetq_lane_s32(bIn0,0) >= 0) && (vgetq_lane_s32(bIn0,0) < hTable_getSize(o->table)));
hv_assert((vgetq_lane_s32(bIn0,1) >= 0) && (vgetq_lane_s32(bIn0,1) < hTable_getSize(o->table)));
hv_assert((vgetq_lane_s32(bIn0,2) >= 0) && (vgetq_lane_s32(bIn0,2) < hTable_getSize(o->table)));
hv_assert((vgetq_lane_s32(bIn0,3) >= 0) && (vgetq_lane_s32(bIn0,3) < hTable_getSize(o->table)));
vst1q_lane_f32(b + vgetq_lane_s32(bIn0, 0), bIn1, 0);
vst1q_lane_f32(b + vgetq_lane_s32(bIn0, 1), bIn1, 1);
vst1q_lane_f32(b + vgetq_lane_s32(bIn0, 2), bIn1, 2);
vst1q_lane_f32(b + vgetq_lane_s32(bIn0, 3), bIn1, 3);
#else // HV_SIMD_NONE
b[bIn0] = bIn1;
#endif
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // _HEAVY_SIGNAL_TABWRITE_H_