/** * Copyright (c) 2014-2018 Enzien Audio Ltd. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "HvSignalBiquad.h" // http://reanimator-web.appspot.com/articles/simdiir // http://musicdsp.org/files/Audio-EQ-Cookbook.txt hv_size_t sBiquad_init(SignalBiquad *o) { #if HV_SIMD_AVX o->x = _mm256_setzero_ps(); #elif HV_SIMD_SSE o->x = _mm_setzero_ps(); #elif HV_SIMD_NEON o->x = vdupq_n_f32(0.0f); #else // HV_SIMD_NONE o->xm1 = 0.0f; o->xm2 = 0.0f; #endif o->ym1 = 0.0f; o->ym2 = 0.0f; return 0; } #if _WIN32 && !_WIN64 void __hv_biquad_f_win32(SignalBiquad *o, hv_bInf_t *_bIn, hv_bInf_t *_bX0, hv_bInf_t *_bX1, hv_bInf_t *_bX2, hv_bInf_t *_bY1, hv_bInf_t *_bY2, hv_bOutf_t bOut) { hv_bInf_t bIn = *_bIn; hv_bInf_t bX0 = *_bX0; hv_bInf_t bX1 = *_bX1; hv_bInf_t bX2 = *_bX2; hv_bInf_t bY1 = *_bY1; hv_bInf_t bY2 = *_bY2; #else void __hv_biquad_f(SignalBiquad *o, hv_bInf_t bIn, hv_bInf_t bX0, hv_bInf_t bX1, hv_bInf_t bX2, hv_bInf_t bY1, hv_bInf_t bY2, hv_bOutf_t bOut) { #endif #if HV_SIMD_AVX __m256 x = _mm256_permute_ps(bIn, _MM_SHUFFLE(2,1,0,3)); // [3 0 1 2 7 4 5 6] __m256 y = _mm256_permute_ps(o->x, _MM_SHUFFLE(2,1,0,3)); // [d a b c h e f g] __m256 n = _mm256_permute2f128_ps(y,x,0x21); // [h e f g 3 0 1 2] __m256 xm1 = _mm256_blend_ps(x, n, 0x11); // [h 0 1 2 3 4 5 6] x = _mm256_permute_ps(bIn, _MM_SHUFFLE(1,0,3,2)); // [2 3 0 1 6 7 4 5] y = _mm256_permute_ps(o->x, _MM_SHUFFLE(1,0,3,2)); // [c d a b g h e f] n = _mm256_permute2f128_ps(y,x,0x21); // [g h e f 2 3 0 1] __m256 xm2 = _mm256_blend_ps(x, n, 0x33); // [g h 0 1 2 3 4 5] __m256 a = _mm256_mul_ps(bIn, bX0); __m256 b = _mm256_mul_ps(xm1, bX1); __m256 c = _mm256_mul_ps(xm2, bX2); __m256 d = _mm256_add_ps(a, b); __m256 e = _mm256_add_ps(c, d); // bIn*bX0 + o->x1*bX1 + o->x2*bX2 float y0 = e[0] - o->ym1*bY1[0] - o->ym2*bY2[0]; float y1 = e[1] - y0*bY1[1] - o->ym1*bY2[1]; float y2 = e[2] - y1*bY1[2] - y0*bY2[2]; float y3 = e[3] - y2*bY1[3] - y1*bY2[3]; float y4 = e[4] - y3*bY1[4] - y2*bY2[4]; float y5 = e[5] - y4*bY1[5] - y3*bY2[5]; float y6 = e[6] - y5*bY1[6] - y4*bY2[6]; float y7 = e[7] - y6*bY1[7] - y5*bY2[7]; o->x = bIn; o->ym1 = y7; o->ym2 = y6; *bOut = _mm256_set_ps(y7, y6, y5, y4, y3, y2, y1, y0); #elif HV_SIMD_SSE __m128 n = _mm_blend_ps(o->x, bIn, 0x7); // [a b c d] [e f g h] = [e f g d] __m128 xm1 = _mm_shuffle_ps(n, n, _MM_SHUFFLE(2,1,0,3)); // [d e f g] __m128 xm2 = _mm_shuffle_ps(o->x, bIn, _MM_SHUFFLE(1,0,3,2)); // [c d e f] __m128 a = _mm_mul_ps(bIn, bX0); __m128 b = _mm_mul_ps(xm1, bX1); __m128 c = _mm_mul_ps(xm2, bX2); __m128 d = _mm_add_ps(a, b); __m128 e = _mm_add_ps(c, d); const float *const bbe = (float *) &e; const float *const bbY1 = (float *) &bY1; const float *const bbY2 = (float *) &bY2; float y0 = bbe[0] - o->ym1*bbY1[0] - o->ym2*bbY2[0]; float y1 = bbe[1] - y0*bbY1[1] - o->ym1*bbY2[1]; float y2 = bbe[2] - y1*bbY1[2] - y0*bbY2[2]; float y3 = bbe[3] - y2*bbY1[3] - y1*bbY2[3]; o->x = bIn; o->ym1 = y3; o->ym2 = y2; *bOut = _mm_set_ps(y3, y2, y1, y0); #elif HV_SIMD_NEON float32x4_t xm1 = vextq_f32(o->x, bIn, 3); float32x4_t xm2 = vextq_f32(o->x, bIn, 2); float32x4_t a = vmulq_f32(bIn, bX0); float32x4_t b = vmulq_f32(xm1, bX1); float32x4_t c = vmulq_f32(xm2, bX2); float32x4_t d = vaddq_f32(a, b); float32x4_t e = vaddq_f32(c, d); float y0 = e[0] - o->ym1*bY1[0] - o->ym2*bY2[0]; float y1 = e[1] - y0*bY1[1] - o->ym1*bY2[1]; float y2 = e[2] - y1*bY1[2] - y0*bY2[2]; float y3 = e[3] - y2*bY1[3] - y1*bY2[3]; o->x = bIn; o->ym1 = y3; o->ym2 = y2; *bOut = (float32x4_t) {y0, y1, y2, y3}; #else const float y = bIn*bX0 + o->xm1*bX1 + o->xm2*bX2 - o->ym1*bY1 - o->ym2*bY2; o->xm2 = o->xm1; o->xm1 = bIn; o->ym2 = o->ym1; o->ym1 = y; *bOut = y; #endif } static void sBiquad_k_updateCoefficients(SignalBiquad_k *const o) { #if DEBUG // inspect the filter coefficients to ensure that the filter is stable // 1/((1-a*z^-1) * (1-b*z^-1)) float k = (o->a1*o->a1) - (4.0f*o->a2); float l = hv_sqrt_f(hv_abs_f(k)); float m_alpha = 0.0f; float m_beta = 0.0f; if (k < 0.0f) { // alpha is complex float r_alpha = o->a1 * 0.5f; float i_alpha = l * 0.5f; m_alpha = (r_alpha*r_alpha + i_alpha*i_alpha); // |alpha|^2 float r_beta = (o->a2 * r_alpha) / m_alpha; float i_beta = (o->a2 * -i_alpha) / m_alpha; m_alpha = hv_sqrt_f(m_alpha); m_beta = hv_sqrt_f(r_beta*r_beta + i_beta*i_beta); } else { // alpha is real float alpha = (o->a1 + l) * 0.5f; float beta = o->a2 / alpha; m_alpha = hv_abs_f(alpha); m_beta = hv_abs_f(beta); } hv_assert(m_alpha < 1.0f); hv_assert(m_beta < 1.0f); #endif // calculate all filter coefficients in the double domain #if HV_SIMD_AVX || HV_SIMD_SSE || HV_SIMD_NEON double b0 = (double) o->b0; double b1 = (double) o->b1; double b2 = (double) o->b2; double a1 = (double) -o->a1; double a2 = (double) -o->a2; double coeffs[4][8] = { { 0, 0, 0, b0, b1, b2, a1, a2 }, { 0, 0, b0, b1, b2, 0, a2, 0 }, { 0, b0, b1, b2, 0, 0, 0, 0 }, { b0, b1, b2, 0, 0, 0, 0, 0 }, }; for (int i = 0; i < 8; i++) { coeffs[1][i] += a1*coeffs[0][i]; coeffs[2][i] += a1*coeffs[1][i] + a2*coeffs[0][i]; coeffs[3][i] += a1*coeffs[2][i] + a2*coeffs[1][i]; } #if HV_SIMD_AVX || HV_SIMD_SSE o->coeff_xp3 = _mm_set_ps((float) coeffs[3][0], (float) coeffs[2][0], (float) coeffs[1][0], (float) coeffs[0][0]); o->coeff_xp2 = _mm_set_ps((float) coeffs[3][1], (float) coeffs[2][1], (float) coeffs[1][1], (float) coeffs[0][1]); o->coeff_xp1 = _mm_set_ps((float) coeffs[3][2], (float) coeffs[2][2], (float) coeffs[1][2], (float) coeffs[0][2]); o->coeff_x0 = _mm_set_ps((float) coeffs[3][3], (float) coeffs[2][3], (float) coeffs[1][3], (float) coeffs[0][3]); o->coeff_xm1 = _mm_set_ps((float) coeffs[3][4], (float) coeffs[2][4], (float) coeffs[1][4], (float) coeffs[0][4]); o->coeff_xm2 = _mm_set_ps((float) coeffs[3][5], (float) coeffs[2][5], (float) coeffs[1][5], (float) coeffs[0][5]); o->coeff_ym1 = _mm_set_ps((float) coeffs[3][6], (float) coeffs[2][6], (float) coeffs[1][6], (float) coeffs[0][6]); o->coeff_ym2 = _mm_set_ps((float) coeffs[3][7], (float) coeffs[2][7], (float) coeffs[1][7], (float) coeffs[0][7]); #else // HV_SIMD_NEON o->coeff_xp3 = (float32x4_t) {(float) coeffs[0][0], (float) coeffs[1][0], (float) coeffs[2][0], (float) coeffs[3][0]}; o->coeff_xp2 = (float32x4_t) {(float) coeffs[0][1], (float) coeffs[1][1], (float) coeffs[2][1], (float) coeffs[3][1]}; o->coeff_xp1 = (float32x4_t) {(float) coeffs[0][2], (float) coeffs[1][2], (float) coeffs[2][2], (float) coeffs[3][2]}; o->coeff_x0 = (float32x4_t) {(float) coeffs[0][3], (float) coeffs[1][3], (float) coeffs[2][3], (float) coeffs[3][3]}; o->coeff_xm1 = (float32x4_t) {(float) coeffs[0][4], (float) coeffs[1][4], (float) coeffs[2][4], (float) coeffs[3][4]}; o->coeff_xm2 = (float32x4_t) {(float) coeffs[0][5], (float) coeffs[1][5], (float) coeffs[2][5], (float) coeffs[3][5]}; o->coeff_ym1 = (float32x4_t) {(float) coeffs[0][6], (float) coeffs[1][6], (float) coeffs[2][6], (float) coeffs[3][6]}; o->coeff_ym2 = (float32x4_t) {(float) coeffs[0][7], (float) coeffs[1][7], (float) coeffs[2][7], (float) coeffs[3][7]}; #endif #endif // NOTE(mhroth): not necessary to calculate any coefficients for HV_SIMD_NONE case } hv_size_t sBiquad_k_init(SignalBiquad_k *o, float b0, float b1, float b2, float a1, float a2) { // initialise filter coefficients o->b0 = b0; o->b1 = b1; o->b2 = b2; o->a1 = a1; o->a2 = a2; sBiquad_k_updateCoefficients(o); // clear filter state #if HV_SIMD_AVX || HV_SIMD_SSE o->xm1 = _mm_setzero_ps(); o->xm2 = _mm_setzero_ps(); o->ym1 = _mm_setzero_ps(); o->ym2 = _mm_setzero_ps(); #elif HV_SIMD_NEON o->xm1 = vdupq_n_f32(0.0f); o->xm2 = vdupq_n_f32(0.0f); o->ym1 = vdupq_n_f32(0.0f); o->ym2 = vdupq_n_f32(0.0f); #else // HV_SIMD_NONE o->xm1 = 0.0f; o->xm2 = 0.0f; o->ym1 = 0.0f; o->ym2 = 0.0f; #endif return 0; } void sBiquad_k_onMessage(SignalBiquad_k *o, int letIn, const HvMessage *m) { if (msg_isFloat(m,0)) { switch (letIn) { case 1: o->b0 = msg_getFloat(m,0); break; case 2: o->b1 = msg_getFloat(m,0); break; case 3: o->b2 = msg_getFloat(m,0); break; case 4: o->a1 = msg_getFloat(m,0); break; case 5: o->a2 = msg_getFloat(m,0); break; default: return; } sBiquad_k_updateCoefficients(o); } }