/** * Copyright (c) 2014-2018 Enzien Audio Ltd. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "HvSignalLine.h" hv_size_t sLine_init(SignalLine *o) { #if HV_SIMD_AVX o->n = _mm_setzero_si128(); o->x = _mm256_setzero_ps(); o->m = _mm256_setzero_ps(); o->t = _mm256_setzero_ps(); #elif HV_SIMD_SSE o->n = _mm_setzero_si128(); o->x = _mm_setzero_ps(); o->m = _mm_setzero_ps(); o->t = _mm_setzero_ps(); #elif HV_SIMD_NEON o->n = vdupq_n_s32(0); o->x = vdupq_n_f32(0.0f); o->m = vdupq_n_f32(0.0f); o->t = vdupq_n_f32(0.0f); #else // HV_SIMD_NONE o->n = 0; o->x = 0.0f; o->m = 0.0f; o->t = 0.0f; #endif return 0; } void sLine_onMessage(HeavyContextInterface *_c, SignalLine *o, int letIn, const HvMessage *m, void *sendMessage) { if (msg_isFloat(m,0)) { if (msg_isFloat(m,1)) { // new ramp int n = (int) hv_millisecondsToSamples(_c, msg_getFloat(m,1)); #if HV_SIMD_AVX float x = (o->n[1] > 0) ? (o->x[7] + (o->m[7]/8.0f)) : o->t[7]; // current output value float s = (msg_getFloat(m,0) - x) / ((float) n); // slope per sample o->n = _mm_set_epi32(n-3, n-2, n-1, n); o->x = _mm256_set_ps(x+7.0f*s, x+6.0f*s, x+5.0f*s, x+4.0f*s, x+3.0f*s, x+2.0f*s, x+s, x); o->m = _mm256_set1_ps(8.0f*s); o->t = _mm256_set1_ps(msg_getFloat(m,0)); #elif HV_SIMD_SSE const hv_int32_t *const on = (hv_int32_t *) &o->n; const float *const ox = (float *) &o->x; const float *const om = (float *) &o->m; const float *const ot = (float *) &o->t; float x = (on[3] > 0) ? (ox[3] + (om[3]/4.0f)) : ot[3]; float s = (msg_getFloat(m,0) - x) / ((float) n); // slope per sample o->n = _mm_set_epi32(n-3, n-2, n-1, n); o->x = _mm_set_ps(x+3.0f*s, x+2.0f*s, x+s, x); o->m = _mm_set1_ps(4.0f*s); o->t = _mm_set1_ps(msg_getFloat(m,0)); #elif HV_SIMD_NEON float x = (o->n[3] > 0) ? (o->x[3] + (o->m[3]/4.0f)) : o->t[3]; float s = (msg_getFloat(m,0) - x) / ((float) n); o->n = (int32x4_t) {n, n-1, n-2, n-3}; o->x = (float32x4_t) {x, x+s, x+2.0f*s, x+3.0f*s}; o->m = vdupq_n_f32(4.0f*s); o->t = vdupq_n_f32(msg_getFloat(m,0)); #else // HV_SIMD_NONE o->x = (o->n > 0) ? (o->x + o->m) : o->t; // new current value o->n = n; // new distance to target o->m = (msg_getFloat(m,0) - o->x) / ((float) n); // slope per sample o->t = msg_getFloat(m,0); #endif } else { // Jump to value #if HV_SIMD_AVX o->n = _mm_setzero_si128(); o->x = _mm256_set1_ps(msg_getFloat(m,0)); o->m = _mm256_setzero_ps(); o->t = _mm256_set1_ps(msg_getFloat(m,0)); #elif HV_SIMD_SSE o->n = _mm_setzero_si128(); o->x = _mm_set1_ps(msg_getFloat(m,0)); o->m = _mm_setzero_ps(); o->t = _mm_set1_ps(msg_getFloat(m,0)); #elif HV_SIMD_NEON o->n = vdupq_n_s32(0); o->x = vdupq_n_f32(msg_getFloat(m,0)); o->m = vdupq_n_f32(0.0f); o->t = vdupq_n_f32(msg_getFloat(m,0)); #else // HV_SIMD_NONE o->n = 0; o->x = msg_getFloat(m,0); o->m = 0.0f; o->t = msg_getFloat(m,0); #endif } } else if (msg_compareSymbol(m,0,"stop")) { // Stop line at current position #if HV_SIMD_AVX // note o->n[1] is a 64-bit integer; two packed 32-bit ints. We only want to know if the high int is positive, // which can be done simply by testing the long int for positiveness. float x = (o->n[1] > 0) ? (o->x[7] + (o->m[7]/8.0f)) : o->t[7]; o->n = _mm_setzero_si128(); o->x = _mm256_set1_ps(x); o->m = _mm256_setzero_ps(); o->t = _mm256_set1_ps(x); #elif HV_SIMD_SSE const hv_int32_t *const on = (hv_int32_t *) &o->n; const float *const ox = (float *) &o->x; const float *const om = (float *) &o->m; const float *const ot = (float *) &o->t; float x = (on[3] > 0) ? (ox[3] + (om[3]/4.0f)) : ot[3]; o->n = _mm_setzero_si128(); o->x = _mm_set1_ps(x); o->m = _mm_setzero_ps(); o->t = _mm_set1_ps(x); #elif HV_SIMD_NEON float x = (o->n[3] > 0) ? (o->x[3] + (o->m[3]/4.0f)) : o->t[3]; o->n = vdupq_n_s32(0); o->x = vdupq_n_f32(x); o->m = vdupq_n_f32(0.0f); o->t = vdupq_n_f32(x); #else // HV_SIMD_NONE o->n = 0; o->x += o->m; o->m = 0.0f; o->t = o->x; #endif } }