/** * Copyright (c) 2014-2018 Enzien Audio Ltd. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #ifndef _HEAVY_SIGNAL_TABWRITE_H_ #define _HEAVY_SIGNAL_TABWRITE_H_ #include "HvHeavyInternal.h" #ifdef __cplusplus extern "C" { #endif #define HV_TABWRITE_STOPPED -1 // ~0x0 typedef struct SignalTabwrite { HvTable *table; hv_uint32_t head; // local write head. Where this object has most recently written to the table. } SignalTabwrite; hv_size_t sTabwrite_init(SignalTabwrite *o, HvTable *table); void sTabwrite_onMessage(HeavyContextInterface *_c, SignalTabwrite *o, int letIn, const HvMessage *m, void (*sendMessage)(HeavyContextInterface *, int, const HvMessage *)); // linear write to table static inline void __hv_tabwrite_f(SignalTabwrite *o, hv_bInf_t bIn) { hv_assert((o->head + HV_N_SIMD) <= hTable_getSize(o->table)); // assert that the table bounds are respected hv_uint32_t head = o->head; #if HV_SIMD_AVX _mm256_store_ps(hTable_getBuffer(o->table) + head, bIn); #elif HV_SIMD_SSE _mm_store_ps(hTable_getBuffer(o->table) + head, bIn); #elif HV_SIMD_NEON vst1q_f32(hTable_getBuffer(o->table) + head, bIn); #else // HV_SIMD_NONE *(hTable_getBuffer(o->table) + head) = bIn; #endif head += HV_N_SIMD; o->head = head; // update local write head hTable_setHead(o->table, head); // update the remote write head (e.g. for use by vd~) } // linear unaligned write to table static inline void __hv_tabwriteu_f(SignalTabwrite *o, hv_bInf_t bIn) { hv_uint32_t head = o->head; #if HV_SIMD_AVX _mm256_storeu_ps(hTable_getBuffer(o->table) + head, bIn); #elif HV_SIMD_SSE _mm_storeu_ps(hTable_getBuffer(o->table) + head, bIn); #elif HV_SIMD_NEON vst1q_f32(hTable_getBuffer(o->table) + head, bIn); #else // HV_SIMD_NONE *(hTable_getBuffer(o->table) + head) = bIn; #endif head += HV_N_SIMD; o->head = head; // update local write head hTable_setHead(o->table, head); // update remote write head } // this tabread can be instructed to stop. It is mainly intended for linear reads that only process a portion of a buffer. // Stores are unaligned, which can be slow but allows any indicies to be written to. // TODO(mhroth): this is not stopping! static inline void __hv_tabwrite_stoppable_f(SignalTabwrite *o, hv_bInf_t bIn) { if (o->head != HV_TABWRITE_STOPPED) { #if HV_SIMD_AVX _mm256_storeu_ps(hTable_getBuffer(o->table) + o->head, bIn); #elif HV_SIMD_SSE _mm_storeu_ps(hTable_getBuffer(o->table) + o->head, bIn); #elif HV_SIMD_NEON vst1q_f32(hTable_getBuffer(o->table) + o->head, bIn); #else // HV_SIMD_NONE *(hTable_getBuffer(o->table) + o->head) = bIn; #endif o->head += HV_N_SIMD; } } // random write to table static inline void __hv_tabwrite_if(SignalTabwrite *o, hv_bIni_t bIn0, hv_bInf_t bIn1) { float *const b = hTable_getBuffer(o->table); #if HV_SIMD_AVX const hv_int32_t *const i = (hv_int32_t *) &bIn0; const float *const f = (float *) &bIn1; hv_assert(i[0] >= 0 && i[0] < hTable_getAllocated(o->table)); hv_assert(i[1] >= 0 && i[1] < hTable_getAllocated(o->table)); hv_assert(i[2] >= 0 && i[2] < hTable_getAllocated(o->table)); hv_assert(i[3] >= 0 && i[3] < hTable_getAllocated(o->table)); hv_assert(i[4] >= 0 && i[4] < hTable_getAllocated(o->table)); hv_assert(i[5] >= 0 && i[5] < hTable_getAllocated(o->table)); hv_assert(i[6] >= 0 && i[6] < hTable_getAllocated(o->table)); hv_assert(i[7] >= 0 && i[7] < hTable_getAllocated(o->table)); b[i[0]] = f[0]; b[i[1]] = f[1]; b[i[2]] = f[2]; b[i[3]] = f[3]; b[i[4]] = f[4]; b[i[5]] = f[5]; b[i[6]] = f[6]; b[i[7]] = f[7]; #elif HV_SIMD_SSE const hv_int32_t *const i = (hv_int32_t *) &bIn0; const float *const f = (float *) &bIn1; hv_assert(i[0] >= 0 && ((hv_uint32_t) i[0]) < hTable_getAllocated(o->table)); hv_assert(i[1] >= 0 && ((hv_uint32_t) i[1]) < hTable_getAllocated(o->table)); hv_assert(i[2] >= 0 && ((hv_uint32_t) i[2]) < hTable_getAllocated(o->table)); hv_assert(i[3] >= 0 && ((hv_uint32_t) i[3]) < hTable_getAllocated(o->table)); b[i[0]] = f[0]; b[i[1]] = f[1]; b[i[2]] = f[2]; b[i[3]] = f[3]; #elif HV_SIMD_NEON hv_assert((vgetq_lane_s32(bIn0,0) >= 0) && (vgetq_lane_s32(bIn0,0) < hTable_getSize(o->table))); hv_assert((vgetq_lane_s32(bIn0,1) >= 0) && (vgetq_lane_s32(bIn0,1) < hTable_getSize(o->table))); hv_assert((vgetq_lane_s32(bIn0,2) >= 0) && (vgetq_lane_s32(bIn0,2) < hTable_getSize(o->table))); hv_assert((vgetq_lane_s32(bIn0,3) >= 0) && (vgetq_lane_s32(bIn0,3) < hTable_getSize(o->table))); vst1q_lane_f32(b + vgetq_lane_s32(bIn0, 0), bIn1, 0); vst1q_lane_f32(b + vgetq_lane_s32(bIn0, 1), bIn1, 1); vst1q_lane_f32(b + vgetq_lane_s32(bIn0, 2), bIn1, 2); vst1q_lane_f32(b + vgetq_lane_s32(bIn0, 3), bIn1, 3); #else // HV_SIMD_NONE b[bIn0] = bIn1; #endif } #ifdef __cplusplus } // extern "C" #endif #endif // _HEAVY_SIGNAL_TABWRITE_H_